English 正规靠谱的网投平台 旧版入口 人才招聘

论坛讲座

【系综合学术报告】2024年第12期 || Examples of complete λ-hypersurfaces in Euclidean spaces & A weighted Reilly formula for differential forms and sharp Steklov eigenvalue estimates

(一)

报告题目: Examples of complete λ-hypersurfaces in Euclidean spaces

时间:2024年5月17日(周五)上午9:30-10:30                地点:理科楼A112

报告人魏国新教授(华南师范大学)

摘要:In this talk, we give a survey about examples of λ-hypersurfaces in Euclidean spaces. Especially, we focus on  embedded  examples of λ-hypersurfaces

  in Euclidean spaces.

报告人简介:魏国新,正规靠谱的网投平台博士毕业,华南师范大学数学科学学院教授,博士生导师,2018年被聘为广东省珠江学者特聘教授。主要从事微分几何的研究,在TAMS,JFA,CAG,MZ, CV PDE    JGA,JDE, SCM 等数学期刊上发表论文60余篇,主持(完成)多项国家自然科学基金项目。



(二)

报告题目: A weighted Reilly formula for differential forms and sharp Steklov eigenvalue estimates

时间:2024年5月17日(周五)上午10:40-11:40              地点:理科楼A112

报告人:熊昌伟教授(四川大学)

摘要:In the talk first we will present how to establish a weighted Reilly formula for differential forms on a compact Riemannian manifold with boundary.

Then we give some applications of this formula. One is a sharp lower bound for the first positive eigenvalue of the Steklov eigenvalue problem on differential

forms investigated by Belishev and Sharafutdinov (2008) and Karpukhin (2019). A second one is a comparison result between the spectrum of this Steklov eigenvalue

problem and the spectrum of the Hodge Laplacian on the boundary of the manifold. At the end we discuss an open problem for differential forms analogous to Escobar's

conjecture (1999) for functions. The talk will be mainly based on the preprint arXiv:2312.16780v2.

报告人简介:熊昌伟,四川大学教授,博士生导师,入选国家级青年人才项目。 2006.08--2010.07和2010.09--2015.07于澳门投注平台官网依次攻读理学学士和理学博士学位;

2015.07--2021.01于澳大利亚国立大学数学科学所从事博士后研究工作;2021.03至今任职于四川大学数学学院。研究方向为微分几何和几何分析,研究兴趣包括Steklov特征值问题,

毛细管超曲面,两点极值原理,等周不等式,欧氏超曲面的各向异性几何等。