English 正规靠谱的网投平台 旧版入口 人才招聘

论坛讲座

【系综合学术报告】2024年第29期 || The radical nipotency of a module category of finite type

报告题目:The radical nipotency of a module category of finite type

报告人Prof. Shiping Liu (University of Sherbrooke in Quebec, Canada)

时间:6月28号(周五)下午 4:00--5:00

地点:理科楼A404

摘要The ultimate objective of the representation theory of artin algebras is to classify the indecomposable modules and describe the morphisms between them. For representation-finite algebras, their representation theory seems be controlled by the Jacobson radical of the module category. Indeed, a well-known result of Auslander says that an algebra is representation-finite if and only if the radical of its module category is nilpotent. The Harada-Sai Lemma gives an estimate of this nilpotency in terms of the maximal composition length of the indecomposable modules. In this talk, we show that this nilpotency in general is determined by only finitely many morphisms associated with the simple modules. Moreover, we will compute this nilpotency explicitely for Nakayama algebras and for hereditary algebras of Dynkin type.

个人简介Dr. Shiping Liu(刘石平),  现为拿大谢布克大学教授.     他于1991年在英国 Liverpool University获得博士学位,1990-1995年在挪威Trondheim University , 新加坡National University of Singapore先后短期任教; 1995年至今在加拿大the University of Sherbrooke工作. 刘石平教授的研究领域是: the representation theory of artin algebras, infinite dimensional algebras and graded algebras; homological algebra; derived cateogries; cluster categories; Koszul theory.

邀请人:朱彬